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HYDRODYNAMICS OF SURFACE PHENOMENA* 

V.V. GOGOSOV , V.A. NALETOVA, N.G.TAKTAROV, CHYONG ZA BIN' and G.A. SHAPOSHNIKOVA 

The hydrodynamics of the interface separating two media in contact, namely 
the liquid-liquid and liquid-gas interface, is investigated. The inter- 
face is modelled by a strong shock surface, with sources of mass, momentum 
and energy /I/. The influence of the interface on the motion of the 
volume phases is described using the characteristics of the surface phases 
such as the surface tension, surface density, velocity, temperature, 
energy, entropy, viscosity, etc. The parameters occur in the relations 
at the strong shock and characterize the internal sources of mass, 
maentum and energy. 

The laws of conservation-of mass, momentum and energy are derived for the surface phase 
consisting of N components, in the multivelocity approximation, when the velocity vector of 
every component is introduced and the complete equations of change of momentum are written out 
for each component. The kinetic energy of the surface phase is determined as the sum of the 
kinetic energies of every component. Such an approach is necessary when the velocities of 
separate canponents are comparable with the difference between the velocity of the component 
and the mean mass velocity of the mixture. The use of the conservation laws in the diffusion 
approximation in this case may give an incorrect result. 

To use the equations obtained to describe the liquid solutions, the internal energy of 
every component, which must be defined when the equations are derived in the multivelocity 
approximation, is assumed to be a function of not only the parameters of the given component, 
but also of the densities of the other components. 

The methods of the thermodynamics of irreversible processes are used to obtain the 
equations for the surface heat fluxes, the surface tensors of the viscous stresses, the 
frictional forces between the components of the surface phase, the chemical surface reaction 
rates, the tangential components of the momentum flux across the surface governed by the 
viscosity of the volume phases, and the mass transfer between the volume and the surface 
phases. The equations describing the mass flux components from the volume to the surface 
phases and vice versa describe the kinetics of the adsorption (desorption) processes in the 
case when the processes are essentially non-equilibrium. 

In the case when the surface density, energy, viscosity, thermal conductivity and volume 
viscosity are all zero, the equations obtained reduce to those of /l/ describing the non- 
equilibrium phase transition. 

Relations on the strong shock surface with external mass, momentum and energy sources 
were derived in /2/. The derivation of the equations of surface hydrodynamics in the diffus- 
ion approximation is analogous to that used in volume hydrodynamics, and is given in /3-6/. 
An extended bibliography covering this problem can be found in /7/. 

The equations of surface hydrodynamics were derived in /T-g/using the method of averag- 
ing the volume equations describing the processes in the interphase layer. In /7/ systems of 
equations were derived for the true, as well as for the redundant surface parameters. Generally 
speaking, the equations obtained differ from those of classical hydrodynamics. In /lo/ a 
correction was obtained for the surface tension related to the mass flux across the interface 
separating two viscous media. 

1. Kinematics of the interphase surface. Let us consider a system consisting of 

two media in contact, liquid-liquid and liquid-gas, which we shall call from now on the 

volume phases I and II. The interface separating them represents a layer of the order of 
ll)__1ol) A thick, and the characteristic parameters of the medium change across it form the 
values in one phase to those in the other phase. The mechanical and thermodynamic properties 
of the medium in the interphase layer differ substantially from those prevalent in the volume 
phases, therefore the interphase layer is regarded as a third, surface phase. We will assume 

that each phase has the same N components and we shall model the narrow interpahse layer by 
strong shock surface 2,. 
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We shall write the aprametric equation of the interphase surface X, in the form (the 
Latin superscripts i, j, k, take the values 1, 2, 3, and the Greek indices OL, /3 - 1,2) xi =x' 

@la, t). Here I’ is the fixed Cartesian coordinate system, K, and no is the curvilinear coord- 
inate system K. on the surface Z, . We shall choose the surface coordinates ?a for conven- 

ience in such a manner, that the relation (ar'/at) Ina = Dn' holds. Here n'are the components 
of the unit vector normal to the surface Z,rand directed towards the plane I, Dni are the 
components of therate of displacement of the surface Z, in space /2/. 

We shall assume that the surface velocity component normal to the surface v,,, = D (here 
and henceforth U = 1,2,...,N). Here we can write that (se = &/aqa are the coordinate vectors 
of the basis of the system, L %s'= are the velocity components of the surface phase elements . 
in the system K,, tangential to the surface Z, , repeated indices a, fi, Y, s, L,lt k, 1 denote 
summation). 

“0 = Dn + Vaoraa (1 -1) 

We also introduce the three-dimensional K.‘(h, q”), coordinate system where h is the dist- 
ance between the points of the space and the surface 2, with a plus (minus) sign if the point 
belongs to the phase I(II), and qa are the coordinates of the projection of this point onto 
the surface Z. in the system K,. 

The following relation /ll/ holds for any tensor function A.(qal t) defined on the sur- 
face 2,: 

d TiT .s,, A, dZ = ,s,, [ $ Ip + VaaA,vP - 2HAsD] dZ 
s 8 

(1.2) 

Here z,(t) is the liquid surface bound to the particles of the surface phase, V,, is 
the covariant derivative on the surface, H = a@b,p/2 is the mean curvature of the surface, 
and a@ (b,B) is the first (second) fundamental quadratic form of the surface. We see that 
(1.2) holds equally well for the characteristics of every component. 

The following formulas hold at any point of the surface L, : 

an 
arff’ I - s,a@V,eD, V,n = - b&B 

8% 
I arrp = nV, D - a,,Db,e 

(1.3) 

Moreover, the partial time derivatives of the surface parameters will be taken everywhere 
at fixed values of the coordinates na, and denoted by a/at. 

2. Basic thermodynamic relations. We shall assume that the volume and surface 

phases represent an N-component mixture. We denote by p?(P,,), @m)(~,,),S~gn(&,) the density, 

internal energy and entropy per unit mass of the a-th component in the volume (on the surface) 
respectively. The indicess, IandII denote the parameters corresponding to the surface and 
volume phases I and II respectively. Further, whenever the parameters of the volume phases 
need not be distinguished from each other., the indices I and II will be omitted. The temp- 
erature of all components is assumed to be the same within each phase, but the temperatures of 
the volume phases TI and TTr at the interface as well as the temperature of the surface phase 
T, do, generally, differ from each other. 

In the case of multicomponent mixtures, except for the mixture of perfect gases,theinter- 
nal energy of every component is a function of not only the thermodynamic parameters of this 
component, but also of the thermodynamic parameters of the other components in the mixture /12/ 

We shall assume that the internal energy of the a-th component in the volume phase U,,(in 
the surface phase U,,,) depends on the entropy of the a-th component in the volume S, (surface 
entropy S,.) and on the volume densities of all components pbr b = 1,2,..., N (surface densities 
,%,.r b-2 1,-i . . ., N) 

We will write Gibbs 
the form (summation over 

u,, = u, (s,, Pb). UC,, = u,, &m Pb.) (2.1) 

identity for the a-th component in the volume and surface phases in 
a and b is carried out everywhere from 1 to N) 

T 

au 
dU,=TdS,$ duo gdpb, T=;iS- (2.2) 

D 

dU,, = T, dS,. + $I 2 df3b.v T, = 2 (2.3) 
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We note that, in general, the surface phase is not "autonomous", i.e. the internal 
surface energy can depend not only on the surface, but also on the volume parameters /13-141, 
. . on the density of the components in the volume phases and on the geometry (e.g. 

zuzvature) of the surface /15/. 
the 

3. Laws of conservation of mass, momentum and energy in the volume phases. 
Using the methods of the thermodynamics of irreversible processes, we can write the set of 
equations for a multicomponent system the internal energies of whose components satisfy the 
Gibbs identities (2.2) in the multivelocity approximation /lZ/ 

L,b(yb-vl) 

Gk=-Vp+?CiTJ’aj, o P=ZPa 

q=- LVT, L> 0, t,ij=L:k’VkU,,r 

X,= b 
Here V, is the velocity of motion of the a-th component, f, is the external force acting 

on the unit mass of the a-th component, q is the heat flux, Taik is the viscous stress tensor 
of the a-th component, x, is the mass change of the a-th component per unit volume per unit 

time, and L,,,, L, (P&, Laijkl are the kinetic coefficients. 
In the case when the internal energy and entropy of the unit mass of the mixture can be 

given by the formulas u=r,cJJ,, 
0 S=TCS, (& = P~/P)v the quantities 5" represent the 

chemical potentials of the mixture, i.e. p = @-~~~‘%)S. P, cb> b#o* 

4. Integral equations of mass and momentum change. Let US consider, at some 
instant t, an arbitrary control volume V bounded by the surface 2, containing within it a 
part of the interphase surface Z,[ encircled by a closed contour 1. Let us choose a point 
M on the surface z,, and construct at M the basis vectors of the coordinate system K,‘, n(M), 
3a W). We shall also consider a liquid volume v,(t) and liquid surface Z,,,(t) of the a-th 
component, which are identical at the given instant t with the control volume V and surface 
z rl respectively. 

Let us write the equations of change of mass and momentum projected on the direction of 
the vectors a,(M) for each component, and equations of change of momentum for the mixture 
projected on the direction of the vector e(M) (all equations are written in the fixed K 
coordinate system) 

(4.1) 

Here v,, is the velocity of the a-th component of the surface phase, f,,,is the external 
force per unit mass of the a-th component at the surface, R,, is the force acting on the a-th 
component at the surface from the direction of the a-th and other components of the surface 
phase and x,. is the change in mass of the a-th component per unit surface area per unit time. 
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The subscripts n and a denote the projections of the vectors on the h and qa axes. 

5. Differential equations describing the change in mass, momentum, energy 
and entropy on the interphase surface. Applying to the integral equations (4.1) the 

procedure of deriving relations at the shock at the point M given in the monograph /2/, and 
taking the equations (1.2), (1.3) into account, we obtain the following differential equations 
describing the change of mass and momentum at the interphase surface ((F} = Im -_, v,,, = D) : 

4 pas + V,ap,~& - 2Hp..D = - &,I + xo8, c xai = 0, (5.1) 
0 

(5.3) 

The following assumptions were made in deriving 

lim 5 R,adr = S IT:,,) do 
V-0” %l 

a 
. . 

T onn = Taijn'Fl' 

(5.1)-(5.3) : 

(5.4) 

(5.5) 

(5.6) 

Relation (5.4) follows from the assumption that the projections of the quantities VP,,, 
pa (aU.@‘b)’ &‘b tangential to the shock, and the force of friction proportional to the differ- 
ence in velocities, occurring in the expression for & in (3.11, are finite. Relation (5.5) 
follows from the definition of R,, in (3.1). The first relation of (5.6) means that the sum 
of all internal forces &,, acting on the surface components is equal to the surface gradient 
of the surface stress tensor of the mixture P,aB. The second equation of (5.6) represents 
the assumption that the tensor P,@ can be represented by the Sum a,& and the viscous surface 
stress tensor, the latter, in turn, being the sum of the viscous stress tensor components, and 
a is the surface tension. Using (1.3) we obtain from (5.6) 

The equations of motion (5.2) and (5.3) together yield the kinetic-energy theorem 

CL GPO8 $+,p,+$S - ZHp,,+ D 1 = 

‘c[i .( - la v,v,s --+ ) + Ta*V,, - PD) + R:~,acr + 2aJiD + 
0 

(5.7) 

Following /16/, we shall make the following fundamental aSSumptionS: 
lo. We shall assume that the energy-change equation of the surface phase has the form 

(Sl is the surface heat flux) 

2’. we shall assume that the change in entropy caused by the influx of heat 
and also due to the deformation of the interface during its motion, has the form 

(5.8) 

and entropy 



284 

Subtracting (5.7) from (5.8) and taking the Gibbs identity (2.3) into account, we obtain 
the equation describing the change in surface entropy (a, is a dissipative function) 

Xl +&. + V&‘S,,V:~ - ZHpJ,,D = 
I 

(5.9) 
(1 

(5.10) 

We note that the first four sums appearing in expression (5.10) for the increase in 
entropy (J., areconnected with the irreversible surface processes, and the last three sums 
with the irreversible interaction between the surface and the volume phases. 

Just as in the volume phases, the quantities E," are the chemical potentials of the 
mixture, with 

When the chemical reactions at the surface proceed in such a manner that we have groups 
of components reacting with each other and not reacting with the components of the othergroups, 
the second term on the right hand side of (5.10) and the corresponding kinetic relations, will 
change. 

Let us assume that for the shocks in question, the mass and heat flux towards the shock, 
and the viscous friction of the surface phase against the volume phase are determined by the 
difference in the values of the corresponding parameters of the volume and surface phases 
occurring in the dissipative function, and the surface characteristics such as surface heat 
flux, rate of change of mass x,, , viscous stress tensor and the forces R,,a, are determined 
by the corresponding parameters just as in the case of the volume parameters. Let us write 
the linear relation connecting the generalized thermodynamic fluxes and forces (for brevity, 
we shall take into account the effects acting across the phases only in the formulas &'I' 

and iA 

q. = - L,V,T,, L, > 0; .E! = LI?ve.8w 
(“ba - “1.)’ 

%I = 2 
I 

(5.11) 

(5.12) 

(5.13) 

(5.14) 
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The kinetic coefficients in (5.11)-(5.14) can depend, generally speaking, on the local 
state parameters of the surface phase, such as temperature, density, component concentration, 

etc. The kinetic equations (5.11), (5.12) can be generalized by including the effects acting 
across the phases. The kinetic equations (5.11) for qa, x,,,,T,,~~, &,. are analogous to the 
corresponding equations for the volume parameters, and have the same physical sense. The 
kinetic equations (5.12)-(5.14) refer to the change in mass, momentum and energy between the 
interface and the volume phases. 

Equations (5.12) describe the viscous interaction between the volume phases and the inter- 
face, and follow from the fact that the modelling of the motion along the surface where the 
velocity distribution across the narrow interphase layer was not homogeneous, involved the 
surface velocities of the components as the mean characteristics. Such a modelling is analog- 
ous to introducing a frictional force between the gas and the particles dispersed in it, pro- 
portionaltothe difference between the velocity of the particles and the oncoming flow. We 
can obtain from (5.12) the relation expressing the equality of the tangential velocity compon- 
ents at the boundary between the phases in contact with each other, and this is the boundary 
condition commonly used in hydrodynamics. 

Formulas (5.13) for car represent an expression for the irreversible heat flux between 
the volume phases and the interface. The flux is proportional, as expected, to the temperature 
difference between the volume and surface phases. We note that the temperatures at the inter- 
face between two phases may differ from each other and from the surface temperature due to the 
presence of a considerable temperature gradient within the normally narrow interphase layer. 
The temperature gradient may be caused by an anomalously low thermal conductivity of the inter- 
phase layer, by considerablemass and heat fluxes, etc. 

Equations (5.14) describe the kinetics of the adsorption-desorption type processes in the 
case when the essential non-equilibrium character of the process represents the generalization 
of the conditions of phase equilibrium (equality of the chemical potentials of the phase com- 
ponents) which follow from (5.14) in the case of thermodynamic equilibrium. From (5.14) it 
follows that the adsorption-desorption process is caused not only by the difference in the 
chemical potentials, but also by the difference in phase temperatures. 

Equations (5.1)-(5.3), (5.8) and (5.11)-(5.14) together with the equations in the volume 
phases I, II (3.1) represent a system for determining the motion of the surface and volume 
phases. Special attention must be given to the structure of the system of equations obtained. 
On one hand, the equations (5.1)--(5.31, (5.8) and (5.11)-(5.14) represent the boundary condi- 
tions connecting the parameters of two volume phases at the shock. On the other hand, they 
represent a system of equations for determining the surface phase parameters when the distribu- 
tion of the volume parameters at the interphase surface is known. In this case additional 
initial and boundary conditions for the surface parameters must generally 'speaking be obtained, 
in order to solve the equations uniquely. The boundary conditions are specified on the lines 
situated on the surface in question. In general, the distribution of the characteristics of 
the surface and volume phases and the position of the interphase surface must be found by 
solving simultaneously the system of equation in the volume and at the interphase surface, 
with specified necessary boundary and initial conditions for the volume, as well as the . 
surface parameters. 

In the special case when the surface density, energy, entropy, viscosity, thermal conduc- 
tivity and volume viscosities can all be neglected, the dissipative function IJ# is identical 
with the dissipative function given in /l/. A suitable choice of the coefficients reduces 
the kinetic equations for i, and qnto the kinetic equations of /l/. 
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MODELS OF POLARIZABLE CONTINUA WITH INTERNAL MECHANICAL MOMENTS* 

A.V. FILIPPOV and L.T. CHERNYI 

General methods of constructing models of continua are used to obtain a 
closed system of equations for a polarizable continuum with internal 
mechanical moments, and the distribution of small perturbations in sucii 
a medium 

1. Consider a 
motion relative to 
equations: 

Here L is the 

studied. 

system of N material points with masses m, and radius vectors rv, whose 
the inertial frame of reference is described by the following Lagrange 

d at aL f 
dtr-dr=v (1 

Y Y 

Lagrangian of the system of material points, f, is the external force 

1) 

vector acting on the v-th point, and t is the time. 
Let the Lagrangian be invariant with respect to translation and rotation of the frame of 

reference, and to the translation of the initial instant of time. We shall also assume in 
accordance with the Galileo's principle of relativity, that the dependence of the Lagrangian 
on the velocities r,' has the following form (here and henceforth the summation over v is 
carried out from v =1 to v = N): 

L=-+ 
l 

mv3 'a - u (t, r1, . . . ,,rN) (1.2) 

(In this case the passage to another inertial frame of reference changes the Lagrangian by a 
total derivative of some function). Then the laws of conservation of momentum n, angular 
momentum K, energy s and mass momentum of the system G all hold in the closed system (i.e. 
when f, = 0 ) . 

Taking into account the external forces, we obtain from (1.1) the following balance 
equations: 

dIl 
7= vt r, f 
dK 
dl= r'v x fw 

dG r=-t 
c f v 

(1.3) 

The existence of ten balance equations (1.3) is justified by the corresponding symmetry 
of the LagrangianL, notedabove,withrespect to the complete ten-parametric group of the 
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